روشهای جایگزین حفر گمانه برای انجام این آزمایش - Hollow stem augers. - Probe rods. # Due to the effect of borehole diameter آزمایش انجام شده در کف چاهک استاندارد نیست پرس شنسلی های ژبوتکنیکی زمین ## لزوم روابط تجربى محلى - BS 5930:1999 - SPT results and soil parameters derived from data from other countries may not correlate with results ...in accordance with BS 1377-9. - So local correlations are required درس شناسایی های ژنوتکنیکی زمین علی فاخر # Energy measurements are required in Iran - For different hammer & - different combinations of drill rig, hammer, rods & drillers درس شناسایی های ژنوتکنیکی زمین علی فاخر ### Example: درس شناسایی های ژنوتکنیکی زمین علی فاخر Results of various methods of energy measurements for various hammer in Korea | Hammer
Type | | F2 Method | | FV Method | | |----------------|------|-------------|-----------------------|-------------|-----------------------| | | | Mean
(%) | Standard
Deviation | Mean
(%) | Standard
Deviation | | WD | <10m | 44.9 | 9.1 | 57.9 | 7.4 | | | >10m | 58.9 | 7.3 | 60.2 | 7.8 | | CA | <10m | 57.4 | 3.1 | 60.0 | 4.5 | | | >10m | 64.9 | 2.6 | 66.4 | 3.4 | | RS | <10m | 54.7 | 3.4 | 58.2 | 3.9 | | | >10m | 58.0 | 3.1 | 59.0 | 4.1 | | RD | <10m | 36.9 | 9.5 | 38.0 | 10.8 | | | >10m | 38.6 | 6.7 | 41.4 | 11.7 | Kim et al (2004) # In Iran: Any important decision should not be taken based upon SPT results درس شناسایی های ژنوتکنیکی زمین علی فاخر # Suggestion for important decisions about liquefaction: A proper Site Characterization by: CPT, and other in-situ tests improvement of sampling methods, c_u = undrained strength D_R = relative density γ_T = unit weight γ_T = unit weight I_R = rigidity index LI = liquefaction index &' = friction angle &' = friction angle OCR = overconsolidation c' = cohesion intercept K₀ = lateral stress state e_o = void ratio e_o = void ratio q_a = bearing capacity V_s = shear wave σ_p' = preconsolidation E' = Young's modulus V_s = shear wave C_c = compression index SAND E' = Young's modulus q_b = pile end bearing Ψ = dilatancy angle f_s = pile skin friction q_b = pile end bearing k = permeability q_a = bearing stress CLAY f_s = pile skin friction $$(N_1)_{60} = C_N N_{60} = \left(\frac{100}{\sigma'_{vo}}\right)^{0.5} N_{60}$$ C_N = correction factor to account for the overburden pressure. As indicated in Eq. 2.5, C_N is approximately equal to $(100/\sigma'_{vo})^{0.5}$ where σ'_{vo} is the vertical effective stress, in kPa. # The effect of borehole diameter If the test is performed in a large diameter borehole, it is not standard. > درس شناسایی های ژنوتکنیکی زمین علی فاخد س شناسایی های ژنوتکنیکی زمین علی فاخر # Test in gravels is ambiguous - Measurement of engineering properties of gravels is a challenge. - The cutting shoe of the sampler may be replaced by a cone (60 deg) but it affects results. - The use of tools of larger diameter than SPT sampler (Large Penetration Test) # Research on the effect of grain size ## Correction for grain size $$\frac{N_1}{D_r^2} = 9 \cdot \left(0.23 + \frac{0.06}{D_{50}}\right)^{-1.7}$$ درس شناسایی های ژنوتکنیکی زمین علی فاخر ## Effect of Energy - N is inversely proportional to the energy - N should be corrected to reference value of 60% of the potential energy of the hammer. درس شناسایی های ژنوتکنیکی زمین علی فاخر